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Biofilm communities of Bacillus subtilis bacteria have recently
been shown to exhibit collective growth-rate oscillations medi-
ated by electrochemical signaling to cope with nutrient starva-
tion. These oscillations emerge once the colony reaches a large
enough number of cells. However, it remains unclear whether the
amplitude of the oscillations, and thus their effectiveness, builds
up over time gradually or if they can emerge instantly with a
nonzero amplitude. Here we address this question by combin-
ing microfluidics-based time-lapse microscopy experiments with
a minimal theoretical description of the system in the form of
a delay-differential equation model. Analytical and numerical
methods reveal that oscillations arise through a subcritical Hopf
bifurcation, which enables instant high-amplitude oscillations.
Consequently, the model predicts a bistable regime where an
oscillating and a nonoscillating attractor coexist in phase space.
We experimentally validate this prediction by showing that oscil-
lations can be triggered by perturbing the media conditions,
provided the biofilm size lies within an appropriate range. The
model also predicts that the minimum size at which oscillations
start decreases with stress, a fact that we also verify experimen-
tally. Taken together, our results show that collective oscillations
in cell populations can emerge suddenly with nonzero amplitude
via a discontinuous transition.

biological oscillations | delay-induced oscillations | subcritical Hopf
bifurcation | delayed negative feedback | biofilm growth

One of the main defining features of collective self-organi-
zation in coupled dynamical systems is the requirement of

a minimum system size (1). According to that scenario, the num-
ber of coupled elements behaves as a control parameter that has
to exceed a certain threshold for collective behavior to arise (2).
Evidence of biological processes requiring a critical cell density
has been reported for instance in myoblast fusion (3), yeast gly-
colysis (4), amoebae aggregation initiation (5), and immune cell
homeostasis (6), among others. The phenomenon also underlies
the most commonly studied means of cell–cell communication
in bacteria, namely quorum sensing (7–9). In fact, the emer-
gence of synchronized oscillations due to coupling in general
systems of interacting elements has been termed dynamical quo-
rum sensing (10, 11), due to its conceptual links with bacterial
communication.

In the studies of dynamical quorum sensing carried out so
far, coupling usually connects all elements of the system in
an all-to-all manner (global coupling), so that the interaction
between one cell and the rest can be described by a mean-
field approximation (5). Such a global-coupling approximation
may not be valid, however, when the population is structured
in space. This is the case, in particular, when communication
between cells is not mediated by a rapidly diffusive signal, but
by a pulse-coupling mechanism through which the cells become
activated by their neighbors in a “bucket-brigade” manner. This
happens for instance in neurons, which are coupled via chem-
ical synapses, and, as we have reported recently, in bacterial
biofilms (12), where the cells signal their immediate neighbors

via potassium ions released by bacterial ion channels (13). In
this latter case, electrical signaling enables bacteria in the inte-
rior of the biofilm (which are subject to severe limitation in their
only nitrogen source, glutamate) to transmit their stress state
to the cells in the periphery (Fig. 1A). Peripheral cells subse-
quently stop growing and allow glutamate to enter the biofilm,
thereby releasing the stress in the interior (12). This constitutes
a spatially distributed negative feedback, which acts with a non-
negligible delay due to the relatively slow propagation of the
stressor.

Delayed negative feedback is well known to induce oscil-
lations (or even more complex aperiodic dynamical phenom-
ena), in particular in biological systems such as gene regula-
tory networks (14–17), physiological control systems (18, 19),
neuronal populations (20), and ecological communities (21).
In Bacillus subtilis biofilms, the above-described delayed nega-
tive feedback leads to oscillations in growth and stress levels
(12). This is shown in Fig. 1B, which depicts a biofilm grow-
ing under constant conditions in a microfluidic system (Fig. 1A)
(12). In the filmstrip, the blue color represents light emitted
by the fluorescent cationic dye Thioflavin T (ThT), which acts
as a Nernstian voltage indicator that reports on the cellu-
lar membrane potential (cells light up when hyperpolarized)
(13, 22). Hyperpolarization results from intracellular potassium
release, which is in turn caused by stress (13). Thus, ThT is a
reporter of cellular stress, and the ThT oscillations portrayed
in Fig. 1B can therefore be considered periodic modulations in
stress.
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Fig. 1. Emerging oscillations in B. subtilis biofilms. (A) Scheme of the
microfluidic device used to grow biofilms. (B) Filmstrip showing oscilla-
tions in stress reported by the membrane potential marker ThT. (Scale bar:
100 µm.) (C) ThT signal as the biofilm grows in size (radius), showing that
the oscillations start only after a critical size is reached.

The oscillations described above exhibit two distinct charac-
teristics. First, they appear only after the biofilm has reached
a minimum size (12). This can be observed in Fig. 1C, which
shows the ThT signal as a function of biofilm size (corresponding
roughly to a time series, since system size increases monotoni-
cally with time). Second, as also shown in Fig. 1C, oscillations
start with nonzero amplitude. Here we propose a basic explana-
tion of these two facts in terms of a minimal delay-differential
equation (DDE) model, in which the delay is considered explic-
itly. The minimal character of the model allows us to iden-
tify the essential features of the system that give rise to its
nontrivial behavior. Specifically, our results show that delayed
stress dynamics are sufficient to explain the experimentally
observed discontinuous emergence of biofilm oscillations at a
critical size.

The model makes two testable predictions. First, the discon-
tinuous transition to oscillations takes the form of a subcritical
Hopf bifurcation that entails the existence of a bistable region,
where a stable state of steady growth coexists with the oscilla-
tory regime described above. Second, the critical system size at
which oscillations start decreases with nutritional stress. We val-
idate experimentally these two expectations, thereby supporting
the hypothesis that stress oscillations in growing biofilms emerge
through a delay-induced Hopf instability.

A DDE Model for Biofilm Stress Dynamics
We set out to build a dynamical model describing the behavior
of the stress levels in the biofilm periphery, which we denote by

x (t). This variable is taken to represent the stress of the periph-
eral cells with respect to a baseline, such that it can take positive
or negative values depending on whether stress levels are above
or below this baseline. In its simplest form, we can assume that
the dynamics of x (t) are given by a production rate that depends
on past stress levels, f (x (t − τ)), and a linear degradation with
rate δ:

dx

dt
= f (x (t − τ))− δx . [1]

The time-delay parameter τ in Eq. 1 includes the time needed
for the growth state of the periphery to affect the stress of the
interior cells and the time that it takes for the stress signal coming
from the interior to reach the peripheral cells (Fig. 2A).

To choose f (x ), we assume that peripheral cells always have
some basal stress production C that is modified by the effect of
the stress experienced by the periphery in the past (Fig. 2A). Up
to a certain level, peripheral stress at a time τ ago, x (t − τ),
would have halted growth and thus it would now, at time t ,
lead to a reduction in stress levels coming from the interior
(f (x )<C ). On the other hand, if stress was too high, the interior
cells would have probably died, thus eliminating the feedback
effect (f (x ) =C ). Conversely, past peripheral stress levels below
baseline would have allowed growth at time t − τ , leading to an
increase in stress at time t (f (x )>C ). Again, values of x well
below the baseline would be indicative of no stress at all, and
thus no feedback would be present (f (x ) =C ). A simple negative
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Fig. 2. A DDE model of biofilm oscillations. (A) Scheme of the model.
Growth in the periphery leads to metabolic stress in the interior, which is
transmitted to the periphery and inhibits growth. Therefore, stress in the
periphery (x) is considered to exert a negative feedback on itself with some
delay (τ ). (B) Stress production function f(x) for C = 1,α= 10, β= γ= 1. The
dashed gray line marks f(x) = C. The dotted black line is the Hill function
1 + 10

1+x2 . The dashed black line is the Mackey–Glass-like function 1− 20x
1+x2 .
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feedback expression like the Hill function 1/(1 + x2) (dotted line
in Fig. 2B), which is often used to model self-inhibition (23, 24),
is not appropriate here since it cannot change sign, and thus it
would allow only for either stress release or buildup, irrespective
of the amount of stress the biofilm had in the past. Another com-
mon representation of feedback is given by the classical Mackey–
Glass function (αx )/(1 + (x/β)n) (19), originally proposed to
model the production of mature blood cells. Subtracted to a basal
production term C to agree with the explanation above, and
in nondimensional form, would lead to the following expression
for f (x ):

f (x ) =C − αx

1 + xn
. [2]

This function is plotted as a dashed line in Fig. 2B. Studies of the
Mackey–Glass function have shown that it leads to supercritical
Hopf bifurcations (25, 26), which are commonly found in dynam-
ical systems including lasers (27), neurons (28), circadian clocks
(29), and other biochemical circuits (30). Supercritical Hopf
bifurcations arise when the fixed point of a system loses stabil-
ity and a stable limit cycle appears, which overlaps in parameter
space with the unstable steady state. The oscillation amplitude is
zero at the bifurcation point and grows progressively as the sys-
tem moves away from it (31). However, as stated previously, our
biofilm oscillations start with nonzero amplitude. This is sugges-
tive of a subcritical Hopf bifurcation, also commonly observed
in natural systems (32–34). In this case, the limit cycle born at
the bifurcation is unstable, overlapping in parameter space with
the stable steady state. The unstable limit-cycle branch generally
folds back into a stable limit cycle of nonzero amplitude, to which
the system is attracted when the stable fixed point loses stability.
Since this behavior is in better agreement with our observations,
we searched for the simplest generalization of the model that
would account for a subcritical Hopf bifurcation. We found that
a quartic term in the denominator of f (x ), together with a neg-
ative squared term, leads to a subcritical bifurcation, as is shown
in the following sections. Therefore, we consider the following
form for f (x ) (solid line in Fig. 2B):

f (x ) =C − αx

1− (x/β)2 + (x/γ)4
. [3]

The quartic term leads to faster loss of feedback with stress
levels than a quadratic expression (compare the dashed and
solid lines in Fig. 2B at the extreme x values). This is biolog-
ically realistic, since we expect biofilm viability and metabolic
feedback to be lost quickly if stress becomes too high or
too low, respectively. Additionally, the negative quadratic term
leads to a weaker effect of stress on delayed stress produc-
tion at low stress levels (compare the dashed and solid lines
around x = 0 in Fig. 2B). This is also biologically reasonable,
since cells have a variety of homeostatic responses that enable
them to maintain their physiological state under weak stress
levels.

Delayed Negative Feedback Leads to Oscillations via a Hopf
Bifurcation
To explore the behavior of the model, we begin by examining an-
alytically how the delay term affects the dynamics of the system.
Eqs. 1 and 3 has a steady-state solution, given implicitly by

C − α xs
1− x2

s + x4
s

− δxs = 0 [4]

(we assume in what follows that β= γ= 1). The stability of
this stationary state is determined by introducing the ansatz
x (t) = xs + η exp(λt) into Eqs. 1 and 3 and expanding f (x ) up
to first order in η. This leads to the characteristic equation (35)

Jτ exp(−λ τ) + J0−λ= 0, [5]

where λ≡µ+ iν is the complex eigenvalue of the steady-state
solution, J0 =−δ is the derivative of the right-hand side of Eqs. 1
and 3 with respect to the nondelayed variable x (t), and Jτ is
the derivative with respect to the delayed variable xτ ≡ x (t − τ),
evaluated at the steady state:

Jτ =−
α xs

(
2xs − 4x3

s

)
(1− x2

s + x4
s )2

− α

1− x2
s + x4

s

. [6]

Expanded into its real and imaginary parts, the characteristic Eq.
5 takes the form

Jτ exp(−µτ) cos(ντ) + J0−µ= 0 [7]
Jτ exp(−µτ) sin(ντ) + ν= 0. [8]

A bifurcation in which the steady state given by Eq. 4 changes
stability entails that µ goes through 0. Setting µ to 0 in Eqs. 7 and
8 leads to the following solution for ν:

ν=
√

J 2
τ − J 2

0 . [9]

This solution exists provided J 2
τ > J 2

0 . When this condition holds,
a Hopf bifurcation arises in which the steady state changes sta-
bility while the imaginary part ν of the eigenvalue is nonzero.
Such a bifurcation leads to an oscillatory, limit-cycle behavior
with frequency ν at the bifurcation.

To make sense of the condition J 2
τ > J 2

0 given above, we now
go to the limit of large δ (more explicitly, δ�C/β,C/γ). This
assumption is experimentally reasonable, since stress release in
the biofilm can be expected to be fast, as it depends on the
opening of ion channels (13) and on metabolic processes that
operate on the order of minutes, whereas the period of the
oscillations is on the order of hours. In this case xs ≈ 0. This
can intuitively be seen by considering Eq. 4 as the crossing of
the function f (x ) (Fig. 2B), which has a value of C at x = 0,
with the line y = δx , which has an increasingly higher slope as
δ increases, and in the limit of a vertical line it would inter-
sect the function at xs = 0. Since, according to Eq. 6, Jτ =−α
for xs = 0, we can rewrite the condition for the existence of the
Hopf bifurcation as α>δ. Therefore, for strong enough nega-
tive feedback the system exhibits a Hopf bifurcation leading to
oscillations.

The Hopf Bifurcation Is Subcritical
To further characterize analytically the Hopf bifurcation
exhibited by the system, we now rewrite Eqs. 1 and 3 as

ε
dx

dt
= C̃ − α̃ x (t − τ)

1− (x (t − τ)/β)2 + (x (t − τ)/γ)4
− x , [10]

where we define ε= 1
δ
, C̃ = C

δ
, and α̃= α

δ
. Taking again the limit

of large δ (ε→ 0), the system reduces to the discrete map xn+1 =

f̃ (xn) (36), where

f̃ (x ) = C̃ − α̃x

1− x2 + x4
, [11]

assuming again β= γ= 1. In this discrete description, the con-
dition for a Hopf bifurcation to occur at a critical value α̃c

is (31)
f̃x (α̃c , x̃s(α̃c)) =− 1, [12]

where the subindex “x” in f̃x indicates differentiation with
respect to x , and x̃s(α̃c) denotes the steady state evaluated at
α̃c . Assuming without loss of generality that C̃ = 0, the fixed
point of the map such that xn = f̃ (xn) is x̃s = 0, and f̃x (α̃c , x̃s) =
−α̃c . This implies, according to Eq. 12, that the critical value
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of the rescaled feedback intensity is α̃c = 1, corresponding to
αc = δ and in agreement with the analysis made in the preceding
section.

The stability of the steady state around the Hopf bifurcation
point can be established by the quantity (37)

a =−
(
f̃xx f̃α + 2 f̃xα

)
, [13]

where the subindex “α” denotes differentiation with respect to
α̃, and the partial derivatives are evaluated at the fixed point x̃s
and at the critical value α̃c of the control parameter. A linear
stability analysis shows (37) that the steady state a small distance
Λ = α̃− α̃c away from the bifurcation point is stable (unstable)
if aΛ< 0 (aΛ> 0). Furthermore, the limit cycle emerging at the
Hopf point corresponds in this discrete description to a period-
2 fixed point xn = f̃ (f̃ (xn)), with xn = x̃s +

√
−aΛ/b (36) and b

equal to

b =−

(
1

2
f̃ 2
xx +

f̃xxx
3

)
. [14]

Considering again C̃ = 0, we find that a and b are both posi-
tive (a = 2 and b = 2). Therefore, the limit cycle that emerges at
the Hopf bifurcation exists for Λ< 0 (α̃ < α̃c) and coexists with
a stable fixed point (since aΛ< 0). We can thus conclude that
the Hopf bifurcation exhibited by this system is subcritical. We
note that the negative quadratic term in the denominator of Eq. 3
determines the subcritical nature of the bifurcation. If it is posi-
tive, then a > 0, b< 0, and the bifurcation becomes supercritical.
If the quadratic term is not present, the parameter b becomes
equal to 0, leading to a limiting behavior that would also be in
disagreement with our experimental observations. We thus do
not consider those two situations further.

Oscillations Can Coexist with a Stable Steady State
To determine whether the conclusion above holds for the com-
plete system (with finite δ) we performed continuation analysis
using the DDE-BIFTOOL software package (26). Fig. 3A shows
that, as α increases, the system undergoes indeed a subcriti-
cal Hopf bifurcation (HB), from which an unstable limit-cycle
branch emerges (whose extrema are represented by a dotted
red line in Fig. 3A) that eventually folds back into a stable
limit cycle (solid red line in Fig. 3A), in what is known as
a fold bifurcation of limit cycles (FLC). Importantly, between
the FLC and HB bifurcations the stable limit cycle coexists
with the stable steady state, resulting in a region of bistabil-
ity. Within that region, the oscillatory dynamics shown in Fig.
1 are expected to coexist with a nonoscillating state in which the
biofilm grows in a monotonic manner. As a result of this bista-
bility, a perturbation of the stable steady state (in the form, for
instance, of a temporary increase in the basal stress production
parameter C ) should make the biofilm jump to the oscillatory
attractor. This can be observed numerically in Fig. 3B, which
shows the response of the stress variable x in our model to a
brief perturbation (represented by the vertical gray region in
the plot).

According to the bifurcation behavior described above, we
should expect that perturbing experimentally an otherwise sta-
tionary biofilm should lead to oscillations when it is perturbed.
To ease comparison with experiments, we model the dynam-
ics of ThT as a reporter located downstream of x . To that
end, we assume that ThT (T ) accumulates in the cell as x
increases in a sigmoidal manner with threshold xth and decays
linearly (13):

dT
dt

=
αT

exp[(xth− x )/σ] + 1
− δT T . [15]

A B

D C

Fig. 3. The system has a subcritical HB. (A) Bifurcation diagram of the
model with respect to α, for C = 0.5, τ = 0.25, β= γ= 1, δ= 10. The black
lines represent steady states; the red lines denote limit cycles [with solid
(dotted) corresponding to stability (unstability)]. HB, Hopf bifurcation; FLC,
fold bifurcation of limit cycles. (B and C) Simulation for α= 12.5. The gray
region denotes a perturbation of parameter C, which is increased to 10 for
0.125 time units. The ThT trace is normalized to its maximum. ThT param-
eters: αT = 10, xth = 0.6,σ= 0.1, δT = 10. (D) Experimental ThT time trace
showing the response to a 30-min stopping of nutrient flow (gray region).

Fig. 3C shows the dynamics of ThT corresponding to the x (t)
time trace in Fig. 3B. The plot confirms that ThT responds in a
bistable manner, remaining in a (stable) stationary solution until
it is perturbed, at which point it jumps to the coexisting oscilla-
tory attractor. We are now ready to validate this expectation in
our experiments.

To perturb the biofilm experimentally we use the fact that,
in our setup, nutrients (in particular glutamate) are flowing
through the microfluidic device in a continuous manner. We
can thus perturb the biofilm by stopping the flow temporarily,
which leads to a sudden increase in glutamate starvation and
stress and is thus analogous to increasing the C parameter in the
model. We call this a “stop-flow” perturbation in what follows.
Fig. 3D shows the response of the biofilm to such perturba-
tion (again represented by a vertical gray bar). In agreement
with the subcritical nature of the bifurcation exhibited by the
model, transiently stopping the flow in growing biofilms trig-
gers the emergence of oscillations, which quickly reach their final
amplitude. We thus conclude that the stress oscillations exhibited
by the biofilm coexist in a bistable manner with a nonoscillat-
ing state, as expected from the delay-differential model pro-
posed above.

Oscillations Require a Minimum System Size
As biofilms grow their size increases, and therefore the parame-
ter that drives the system to the bifurcation point should be the
delay τ rather than α. Solving Eqs. 7 and 8 for τ with µ= 0 leads
to the exact critical value of the delay at which the bifurcation
occurs,

τc =

√
arccos(−J0/Jτ )2

J 2
τ − J 2

0

=

√
arccos(δ/Jτ )2

J 2
τ − δ2

, [16]

which, again, exists provided J 2
τ >δ

2. Continuation analysis con-
firms that the system can also undergo a subcritical HB when
increasing τ , as shown in Fig. 4A. Fig. 4A shows that there is also
a large region of bistability in this case. Thus, the model predicts

E8336 | www.pnas.org/cgi/doi/10.1073/pnas.1805004115 Martinez-Corral et al.
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A B

C D

Fig. 4. The subcritical HB can be controlled by the time delay (τ ). (A) Bifur-
cation diagram as a function of τ , for C = 1,α= 10, β= 1, γ= 1, δ= 10. (B)
Analytic relationship between the oscillation period and the time delay for
different values of δ (solid lines), according to Eq. 17. The green dashed line
shows the limit of infinite δ: T = 2τ . (C) Numerical relationship between
the oscillation period and the time delay for the same parameter val-
ues as in A. The light blue line is the result of continuation analysis with
DDE-BIFTOOL, the blue solid circles show simulation results, and the green
dashed line is the relationship T = 2τ , for reference and comparison with B.
(D) Period at the oscillation onset as a function of biofilm size (radius). Scat-
terplot, experimental data; gray line, linear fit; r, correlation coefficient; p,
P value.

that for small delays the system is at a steady state, it then enters a
bistable region, and it finally crosses the bifurcation point, where
only an oscillatory steady state remains. Incidentally, period-
doubling bifurcations arise when τ increases (branching of red
line in Fig. 4A), and higher-order doublings arise for larger val-
ues of C . Since the relationship of these phenomena to the
experimental data is unclear, we do not comment further on it.

We can also explore theoretically the relationship between
the period of the oscillations and the time delay. To that end,
we assume that the oscillation frequency will be given approxi-
mately by the imaginary part ν of the eigenvalue of the steady
state, which is true at the bifurcation point. Combining Eqs. 7
and 8 through the elimination of exp(−µτ) leads to the following
equation for ν,

0 =
−ν
δ+µ

− tan(ντ)≈ −ν
δ
− tan(ντ), [17]

where we assume again the limit of large δ�µ. In that limit,
the equation above has three solutions for ντ in [−π,π], which
are asymptotically close to 0, π, and −π. Taking into account
that Jτ ≈−α< 0 for large δ and that J0 =−δ < 0 in any case,
Eqs. 7 and 8 lead to the conclusion that cos(ντ)< 0 (and close
to −1) and sin(ντ)> 0 (and close to 0). The only one of the
three solutions listed above that fulfills these conditions is ντ ≈
π. Therefore, in the limit of large δ we can expect the oscilla-
tion period to be T ∼ 2π/ν≈ 2τ . This expression is shown as
a green dashed line in Fig. 4B. Fig. 4B also plots the result of
numerically solving Eq. 17 for different finite values of δ. For
δ= 10, for instance, the relationship between the period and the

critical delay lies slightly above the line T = 2τ . Moreover, this
relationship also holds for delay values away from the bifurca-
tion point. This is shown in Fig. 4C for the parameter values of
Fig. 4A. The light blue line plots the results of the continuation
analysis, and the solid circles are the results of numerical simula-
tions. This linear relationship between the period and the delay is
consistent with the experimental observations (Fig. 4D), as well
as with the previously reported increase of period over time in
oscillating biofilms (extended data figure 1b in ref. 12), further
validating our interpretation of the time delay as being directly
related with the biofilm size.

The bifurcation behavior shown in Fig. 4A indicates that
beyond a critical delay (corresponding to a critical biofilm size),
the only stable attractor of the system is an oscillatory one. How-
ever, even before that critical size is reached, the biofilm can be
induced to oscillate if properly perturbed (as shown in Fig. 3).
The “ease” with which a perturbation will induce the biofilm to
jump from steady to oscillatory growth within the bistable region
is (roughly) inversely related to the size of the basin of attraction
of the stable fixed point. An indication of the size of this basin
of attraction is provided by the amplitude of the unstable limit
cycle (dotted red line in Fig. 4A) surrounding the stable fixed
point (solid black line in Fig. 4A). The bifurcation diagram shows
that the unstable limit cycle gets closer to the stable fixed point
as τ (and hence the system size) increases. Therefore, the model
predicts that the closest the system is to the bifurcation point,
the easiest it will be that a perturbation drives it out of the stable
fixed point and into the oscillatory attractor. This agrees well with
the experimental data shown in Fig. 5A, where larger biofilms

A

B C

Fig. 5. Oscillation triggering in the bistable regime is easier for larger
biofilms. (A) Fraction of experiments (solid blue bars) in which a stop-flow
perturbation triggers oscillations in growing biofilms. The flow was stopped
for 30 min and the appearance of oscillations was assessed. Nonresponding
biofilms are indicated by the white bars. (B) Sample ThT experimental time
trace where an early application of a stop-flow perturbation (vertical gray
bar) does not trigger oscillations, but a subsequent one when the system is
slightly larger does. (C) Simulation of the system with increasing τ . Two sub-
sequent stop-flow–type perturbations (increase of C to 3.5) were applied, at
times 1.25 and 3.25, for 0.5 time units. Parameter values are those of Fig.
4, plus η= 0.035, δτ = 0.02, αT = 10, xth = 0.6, σ= 0.1, and δT = 10. Initial
conditions are τ0 = 0.75, T0 = 0, and x0 = 0.05. ThT time trace is normalized
to its maximum.
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are more likely to start oscillating upon a stop-flow perturbation.
Furthermore, biofilms under a minimum size of around 400 µm
never oscillate, and those beyond a maximum size of around
670 µm always oscillate.

Since the biofilm is continuously growing, the responsiveness
to perturbations depends on time: Perturbing the biofilm when it
is too small does not result in oscillations, whereas a subsequent
perturbation does (Fig. 5B). To model this behavior and explore
the interplay between growth and consecutive perturbations, we
assume that the time delay in Eq. 1 increases at a rate that dimin-
ishes with x , since when the biofilm is stressed above (below) the
basal level, its growth rate will decrease (increase), and so will its
size, and correspondingly the delay:

dτ

dt
= η− δτx [18]

(parameters η and δτ are chosen in such a way that dτ/dt
is always positive). We used these dynamics to investigate the
response to two consecutive perturbations in the model. Accord-
ing to the simulations, if the system is too small, a stop-flow
perturbation may not perturb the system sufficiently to make
it jump to the oscillatory attractor (Fig. 5C). But a subsequent
perturbation when the delay is larger can, as in the experiments
(compare Fig. 5 B and C).

The Critical Size for Oscillation Onset Is a Function of the
Stress Level
As shown in Fig. 4A, the bistability region is bounded on the
right by the critical delay at which the HB occurs and on the
left by the point at which the unstable limit cycle becomes sta-
ble at the FLC. We performed a continuation analysis to explore
how these two bifurcation points change as a function of the
delay τ and the basal stress production C . Fig. 6A represents
the resulting phase diagram, where the purely oscillatory region
is bound by the HB line (thick black line, with solid represent-
ing supercriticality and dashed subcriticality), and the bistable

A B

C D

Fig. 6. Stress reduces the critical size for oscillations. (A) Phase diagram
showing the position of the HB (solid and dashed black lines) and FLC
(dotted black line), as a function of the basal stress production C and the
feedback delay τ . The color map shows the probability of oscillation in
stochastic simulations with stop flow consisting of an increase in C by a fac-
tor of 3 during 0.5 time units. Parameters are those of Fig. 4. (B) Bifurcation
diagram as a function of C for fixed τ , corresponding to a vertical cross-
section of A at τ = 0.5. (C) Horizontal cross-sections of the gray field from
A at different C levels (smoothed). (D) Experimental cumulative distribution
functions (CDF) of the size at oscillation onset for three different glutamate
concentrations.

region is delimited by the subcritical HB line and the FLC line
(dotted black line). A 1D vertical cross-section of this phase dia-
gram for fixed τ is shown in Fig. 6B as a bifurcation diagram
with respect to C and confirms that the entire region below the
subcritical HB is indeed bistable. The phase diagram depicted
in Fig. 6A shows that the bistability region is wide. Moreover,
the analysis indicates that for high enough values of C the
HB as a function of τ becomes supercritical and bistability is
lost. At this point, f (x ) is highly biased toward positive values,
mostly contributing to stress increase. This suggests that bistabil-
ity requires the system to relieve stress sufficiently below baseline
levels.

Within the bistable region, Fig. 6A also predicts that for
higher basal stress levels (higher C ), the critical delay at
which the Hopf bifurcation happens (dashed line) is reduced,
while the position of the fold bifurcation remains unchanged
(dotted line). We confirm this result by adding noise to the sys-
tem and integrating numerically the corresponding stochastic
DDE (Materials and Methods) for different C and delay val-
ues. We compute the response of the system to a temporary
increase of the basal stress production rate C for 100 realiza-
tions of the noise and quantify the fraction of simulations in
which the system switches from the stable fixed point to the
limit cycle attractor. In agreement with the continuation anal-
ysis, we found that for higher basal stress levels the system is
able to respond to the perturbation for smaller delays (Fig. 6C).
We can validate this prediction experimentally by tuning the
glutamate concentration of the medium, with lower concentra-
tions being associated with higher values of C . Identifying the
cumulative distribution of sizes at which biofilms are found to
oscillate (either naturally or upon a stop-flow perturbation) with
the propensity of the biofilm to switch to oscillations for a given
size, we observe (Fig. 6D) a good qualitative agreement with the
model: For higher stress levels (lower levels of glutamate) the
critical size to respond to perturbations is reduced. The model
predicts that the range of the bistable sizes is reduced as stress
increases, which is also in agreement with the experimental data
(compare, e.g., the ranges of the magenta and green lines in
Fig. 6 C and D).

Discussion
We have studied the transition to growth oscillations in bacte-
rial biofilms. Our experiments show that the oscillations arise
for a minimum biofilm size with finite amplitude. Here, we have
proposed a minimal model to explain these features, assuming
a general functional behavior of stress production. This simple
mathematical model, in terms of a DDE, reveals the essential
features of the transition to oscillations in this system. The model
shows emergence of oscillations at a critical delay (which we link
with biofilm size), through a subcritical HB. Such bifurcation
entails the presence of a bistable regime in which the biofilms
either oscillate in their growth or expand steadily, depending
on the initial conditions. Experimentally, this expectation can
be validated by temporarily stopping the media flow within the
microfluidic device. Our experiments do show that such pertur-
bations lead to oscillations in growing biofilms, provided they are
large enough.

Biofilm oscillations were described to be a mechanism to pre-
vent cells in the biofilm interior from dying due to starvation
caused by the growth of peripheral cells, and this was shown to
enable the regeneration of the community upon external chem-
ical attacks (12). Therefore, the bistable behavior reported here
could be a mechanism to allow oscillations to start early enough
to ensure the survival of interior cells. Both the model and the
data show that the critical size for biofilm oscillations depends
on the nutrient concentration in the media. This is consistent
with the fact that when nutrient levels are low, interior cells
become starved earlier, thus triggering the emergence of the
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oscillations at smaller sizes. Also, the discontinuous transition
allows the biofilm to start oscillating immediately with a nonzero
amplitude, instead of having to wait for the oscillations to slowly
develop.

Our model is similar to the classical Mackey–Glass equa-
tion, which is well known to undergo period-doubling bifurca-
tions that eventually lead to chaotic behavior (19, 25). We also
observed such richness in dynamical behavior in our case. How-
ever, although mathematically interesting, we have not further
analyzed it as it does not seem relevant to our experimental
situation. In contrast, the good agreement between the model
and the experimental data in terms of the discontinuous emer-
gence of oscillations and the presence of bistability highlights the
importance of developing simple mathematical models of biolog-
ical systems, which allow us to establish the minimal conditions
underlying specific biological phenomena.

Delayed feedback has been recognized as a source of dynam-
ical behavior in many areas of science and engineering for
years (35). Spatially structured biological populations provide a
natural substrate for delayed interactions due to the finite propa-
gation speed of biological signals. The results reported here show
that such delayed interactions can have important collective
effects in bacterial populations. It would be interesting to study
the roles played by similar delay-induced mechanisms in other
biological systems requiring global spatiotemporal coordination,
such as developing organisms.

Materials and Methods
Biofilm Culture Conditions and Stop-Flow Procedure. B. subtilis biofilms were
grown in microfluidics chips as described previously (12, 13). Media flow was
driven by a pneumatic pump from the CellASIC ONIX Microfluidic Platform
(EMD Millipore). The pump pressure was kept stable during the course of
the experiments. We used a pump pressure of 1.5 psi with only one media
inlet open, which maintains a media flow of 24 µm/s in the microfluidic
chamber. During each stop-flow perturbation, the pump was turned off
for 30 min. Biofilms were monitored using time-lapse microscopy, and we
tracked metabolic oscillations within growing biofilms using 10 µM ThT.
Experimental time traces are detrended using spline interpolation on the
troughs of oscillations, smoothed and normalized to the maximum.

Continuation Analysis. Bifurcation diagrams were computed using the DDE-
BIFTOOL v.3.1.1 package (26), run in Octave (38).

Simulations. Deterministic simulations of the system for fixed values of τ
were carried out using the Python package pydelay v.0.1.1 (39). Determin-
istic simulations with state-dependent delays were performed using the
routine ddesd (40) in Matlab (The MathWorks, Inc.). Initial conditions were
the analytical steady state for the x variable and 0 for ThT.

To introduce noise into the system, we included an additive Gaussian
white noise ξ(t) in the stress equation,

dx

dt
= C−

α x(t− τ )

1− (x(t− τ )/β)2 +(x(t− τ )/γ)4
− δ x + Dξ(t), [19]

with noise strength D = 0.03. We integrated this stochastic DDE with a
custom-made code by adapting the stochastic Heun algorithm (41) to
include the delay.

To calculate the oscillation probability at each combination of τ and C
values (Fig. 6A), we performed 100 simulations per parameter combination.
For each simulation, a random initial history array was generated from a
uniform distribution in the interval [0.5xs, 1.5xs], where xs is the steady-state
value. We then integrated Eq. 19 for 100 time units, at which point the C
value was increased by a factor of 3 for 0.5 time units to simulate the stop
flow and then returned to basal level for 1,000 time units. The last 100 time
units were used to classify each trace as oscillatory or not, depending on
whether it exhibited oscillations of amplitude larger than one.
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